

Furkan Ercan*, Thibaud Tonnellier, Nghia Doan, Warren J. Gross Integrated Systems for Information Processing (ISIP) Lab McGill University

Montréal, Québec, Canada

May 8, 2020

Ercan, et al.

5G Use Cases

Enhanced Mobile Broadband (**eMBB**)

High Throughput

Ultra-Reliable Low-Latency Communications (**URLLC**)

Low Latency High Reliability

Massive Machine-Type Communications (**mMTC**)

Massive Connectivity Energy Efficiency

5G prioritizes various targets based on the use case.

►

►

►

5G Use Cases

Enhanced Mobile Broadband (**eMBB**)

High Throughput

Ultra-Reliable Low-Latency Communications (**URLLC**)

Low Latency High Reliability

Massive Machine-Type Communications (**mMTC**)

Massive Connectivity Energy Efficiency

- 5G prioritizes various targets based on the use case.
- Polar codes provably achieve channel capacity.
- They are involved in 5G eMBB control channel.

►

5G Use Cases

Enhanced Mobile Broadband (**eMBB**)

High Throughput

Ultra-Reliable Low-Latency Communications (**URLLC**)

Low Latency High Reliability

Massive Machine-Type Communications (**mMTC**)

Massive Connectivity Energy Efficiency

- 5G prioritizes various targets based on the use case.
- Polar codes provably achieve channel capacity.
- They are involved in 5G eMBB control channel.
- Currently, polar codes are being evaluated for other use cases.

Base Algorithms:

Successive Cancellation (SC) Decoding

- Simple encoding/decoding
- X Mediocre performance at practical lengths
- X Sequential, long latency

Fast-SSC Decoding

 $\checkmark~\approx$ 10× less latency

No error correction performance degradation

Ercan, et al.

Faster

SC-List (SCL) Decoding

- Improved performance
- X Increased complexity

SC-List (SCL) Decoding

- Improved performance
- X Increased complexity

SC-Flip (SCF) Decoding

- Some improved performance
- Low complexity
- X Variable latency

SC-Flip (SCF) Decoding

- Some improved performance
- Low complexity
- X Variable latency

- Expensive computations (log, exp, ×)
- × No practical implementation

This Work

- No expensive computations
- Introduce fast decoding techniques
- First steps towards practical implementations

SC-Flip (SCF) Decoding

Legend

) Frozen bit

Information bit

SC-Flip (SCF) Decoding

Legend

Information bit

Decoding Trajectory

Problems with SCF Algorithm

• Metric for SCF for node index i: $|L_i|$ where L is LLR.

Problems with SCF Algorithm

- Metric for SCF for node index i: $|L_i|$ where L is LLR.
- Performance improvement of SCF is limited:
 - · Comparable to SCL with small list sizes.

Problems with SCF Algorithm

- Metric for SCF for node index i: $|L_i|$ where L is LLR.
- Performance improvement of SCF is limited:
 - · Comparable to SCL with small list sizes.
- Two main problems of SCF:
 - Metric cannot distinguish channel errors from propagated errors.
 - Only one error can be corrected.

Dynamic SC-Flip (DSCF) algorithm tackles both issues of SCF decoding:

 A better metric that can distinguish channel errors from propagated errors.

Dynamic SC-Flip (DSCF) algorithm tackles both issues of SCF decoding:

- A better metric that can distinguish channel errors from propagated errors.
- This gives an opportunity to tackle more than one channel error.

Dynamic SC-Flip (DSCF) algorithm tackles both issues of SCF decoding:

- A better metric that can distinguish channel errors from propagated errors.
- This gives an opportunity to tackle more than one channel error.
- Therefore, performance is improved greatly.

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \dots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \dots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

The metric for DSCF decoding, based on LLRs, is computed as

$$M_{\alpha}(\mathcal{E}_{\omega}) = \sum_{j \in \mathcal{E}_{\omega}} |L^{0}[\mathcal{E}_{\omega-1}]_{j}| + S_{\alpha}(\mathcal{E}_{\omega})$$

where

$$\mathcal{S}_{\alpha}(\mathcal{E}_{\omega}) = \frac{1}{\alpha} \sum_{\substack{j \leq l_{\omega} \\ \forall j \in \mathcal{A}}} \log(1 + \exp(-\alpha |L^{0}[\mathcal{E}_{\omega-1}]_{j}|))$$

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \ldots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

The metric for DSCF decoding, based on LLRs, is computed as

LLR magnitudes at
flipping indices
$$M_{\alpha}(\mathcal{E}_{\omega}) \neq \sum_{j \in \mathcal{E}_{\omega}} |L^{0}[\mathcal{E}_{\omega-1}]_{j}| + S_{\alpha}(\mathcal{E}_{\omega})$$

where

$$\mathcal{S}_{\alpha}(\mathcal{E}_{\omega}) = \frac{1}{\alpha} \sum_{\substack{j \leqslant i_{\omega} \\ \forall j \in \mathcal{A}}} \log(1 + \exp(-\alpha |\mathcal{L}^{0}[\mathcal{E}_{\omega-1}]_{j}|))$$

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \ldots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

The metric for DSCF decoding, based on LLRs, is computed as

where

$$S_{\alpha}(\mathcal{E}_{\omega}) = \frac{1}{\alpha} \sum_{\substack{j \leqslant i_{\omega} \\ \forall j \in \mathcal{A}}} \log(1 + \exp(-\alpha |L^{0}[\mathcal{E}_{\omega-1}]_{j}|))$$

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \dots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

The metric for DSCF decoding, based on LLRs, is computed as

where

$$S_{\alpha}(\mathcal{E}_{\omega}) = \underbrace{1}_{\substack{\alpha \\ \forall j \in \mathcal{A}}} \log(1 + \exp(-\alpha |L^{0}[\mathcal{E}_{\omega-1}]_{j}|))$$

positive constant

- Let ω denote the *decoding order*.
- Let $\mathcal{E}_{\omega} = \{i_1, \dots, i_{\omega}\}$ denote the set of bit-flipping indices.
- Note that the set \mathcal{E}_{ω} is built *progressively* over $\mathcal{E}_{\omega-1}$.

The metric for DSCF decoding, based on LLRs, is computed as

First, we reformulate $S_{\alpha}(\mathcal{E}_{\omega})$ as

$$S_{\alpha}(\mathcal{E}_{\omega}) = \sum_{\substack{j \leq i_{\omega} \\ \forall j \in \mathcal{A}}} f_{\alpha}(|L^{0}[\mathcal{E}_{\omega-1}]_{j}|),$$

where

$$f_{\alpha}(\mathbf{x}) = \frac{1}{\alpha} \log(1 + \exp(-\alpha \mathbf{x})).$$

First, we reformulate $S_{\alpha}(\mathcal{E}_{\omega})$ as

$$S_{\alpha}(\mathcal{E}_{\omega}) = \sum_{\substack{j \leq i_{\omega} \\ \forall j \in \mathcal{A}}} f_{\alpha}(|L^{0}[\mathcal{E}_{\omega-1}]_{j}|),$$

where

$$f_{\alpha}(\mathbf{x}) = \frac{1}{\alpha} \log(1 + \exp(-\alpha \mathbf{x})).$$

Then, we take a closer look at the behavior of $f_{\alpha}(x)$. Following the original DSCF algorithm, $\alpha = .3$.

Simplified Dynamic SC-Flip Polar Decoding | ICASSP 2020

 Interestingly, a similar problem was encountered for Turbo codes in 1998*.

^{*} W. Gross and P. Gulak. "Simplified MAP algorithm suitable for implementation of turbo decoders," Electronics Letters, vol. 34, no. 16, pp. 15771578, Aug 1998.

 Interestingly, a similar problem was encountered for Turbo codes in 1998*.

^{*} W. Gross and P. Gulak. "Simplified MAP algorithm suitable for implementation of turbo decoders," Electronics Letters, vol. 34, no. 16, pp. 15771578, Aug 1998.

 Interestingly, a similar problem was encountered for Turbo codes in 1998*.

We replace $f_{\alpha=0.3}(x)$ with

$f^*_{\alpha=0.3}(x) =$	$\int \frac{3}{2}$,	if <i>x</i> ≤ 5
	<u></u>	otherwise.

The values in $f^*_{\alpha=0,3}(x)$ are chosen in favor of quantization.

^{*} W. Gross and P. Gulak. "Simplified MAP algorithm suitable for implementation of turbo decoders," Electronics Letters, vol. 34, no. 16, pp. 15771578, Aug 1998.

Impact of the Simplification on Performance

▶ PC(N, K) = PC(1024, 512), CRC length C = 16 bits.

•
$$T_{\max} \in \{10, 40, 200\}$$
 for $\omega \in \{1, 2, 3\}$.

Simplified Dynamic SC-Flip Polar Decoding | ICASSP 2020

Impact of the Simplification on Performance

▶ PC(N, K) = PC(1024, 512), CRC length C = 16 bits.

•
$$T_{\max} \in \{10, 40, 200\}$$
 for $\omega \in \{1, 2, 3\}$.

Simplified Dynamic SC-Flip Polar Decoding | ICASSP 2020

Impact of the Simplification on Performance

- PC(N, K) = PC(1024, 512), CRC length C = 16 bits.
- $T_{\text{max}} \in \{10, 40, 200\}$ for $\omega \in \{1, 2, 3\}$.

Simplified Dynamic SC-Flip Polar Decoding | ICASSP 2020

- Simplification of the metric made DSCF a potential algorithm towards a practical implementation.
- Special bit-patterns (nodes) of interest: Repetition (Rep), and Rate-1 nodes.
- Examples:

- Simplification of the metric made DSCF a potential algorithm towards a practical implementation.
- Special bit-patterns (nodes) of interest: Repetition (Rep), and Rate-1 nodes.
- Examples:

- Simplification of the metric made DSCF a potential algorithm towards a practical implementation.
- Special bit-patterns (nodes) of interest: Repetition (Rep), and Rate-1 nodes.
- Examples:

Recall the original DSCF metric:

$$M_{\alpha}(\mathcal{E}_{\omega}) = \sum_{j \in \mathcal{E}_{\omega}} |L^{0}[\mathcal{E}_{\omega-1}]_{j}| + S_{\alpha}(\mathcal{E}_{\omega})$$

Recall the original DSCF metric:

$$M_{\alpha}(\mathcal{E}_{\omega}) = \sum_{j \in \mathcal{E}_{\omega}} |L^{0}[\mathcal{E}_{\omega-1}]_{j}| + S_{\alpha}(\mathcal{E}_{\omega})$$

Let us split it as follows:

$$\mathcal{M}_{\alpha}(\mathcal{E}_{\omega}) = \underbrace{|\mathcal{L}^{0}[\mathcal{E}_{\omega-1}]_{i_{\omega}}|}_{\mathcal{M}'(L)} + \underbrace{\sum_{j \in \mathcal{E}_{\omega-1}} |\mathcal{L}^{0}[\mathcal{E}_{\omega-1}]_{j}| + \mathcal{S}_{\alpha}(\mathcal{E}_{\omega})}_{\mathcal{M}''(L)}.$$

- ► M'(L) is the instantaneous value obtained from the node, on the spot.
- ► M''(L) is the accummulative value, formed over the course of the decoding.

M(L) = M'(L) + M''(L).

- M'(L) is directly obtained from the LLR magnitude of the index.
- M''(L) is updated by the LLR magnitude of the index.

►

M(L) = M'(L) + M''(L).

- M'(L) is directly obtained from the LLR magnitude of the index.
- M''(L) is updated by the LLR magnitude of the index.

►

M(L) = M'(L) + M''(L).

- M'(L) is directly obtained from the LLR magnitude of the index.
- M''(L) is updated by the LLR magnitude of the index.

Main idea: Do the same with special nodes involved.

Involving Rep Nodes into DSCF

- The only information bit in a Rep node is repeated over at the top-level.
- The same LLR can be obtained by summing all top-node LLRs:

$$L_{\mathsf{Rep}} = \left| \sum_{i \in N_{\mathsf{v}}} L^{\mathcal{S}}[\mathcal{E}_{\omega-1}]_i \right|$$

Therefore;

• L_{Rep} is directly used to create M'(L) and update M''(L).

Involving Rate-1 Nodes into DSCF

- Rate-1 nodes are uncoded sequences (no redundancy).
- As a result, all top-node indices are considered for bit-flipping individually.

For each top-node index *i*:

$$L_{\text{Rate-1},i} = |L^{S}[\mathcal{E}_{\omega-1}]_{i}|$$

For a Rate-1 node of size N_{ν} ;

- $N_v M'(L)$ values are created for each top-node index.
- M''(L) is updated once per Rate-1 node using N_v LLRs.

Results - Performance

▶ PC(1024, 512), CRC length C = 16 bits, $T_{max} \in \{40, 200\}$ for $\omega \in \{2, 3\}$.

^{15/18}

Results - Performance

• PC(1024, 512), CRC length C = 16 bits, $T_{max} \in \{40, 200\}$ for $\omega \in \{2, 3\}$.

Ercan, et al.

15/18

Results - Performance

• PC(1024, 512), CRC length C = 16 bits, $T_{max} \in \{40, 200\}$ for $\omega \in \{2, 3\}$.

^{15/18}

Results - Computational Complexity

• PC(1024, 512), CRC length C = 16 bits, $T_{max} \in \{40, 200\}$ for $\omega \in \{2, 3\}$.

Conclusion

 First steps towards a practical implementation for the Dynamic SCF algorithm.

Conclusion

- First steps towards a practical implementation for the Dynamic SCF algorithm.
- We showed how to:
 - Replace transcendental computations with a simple threshold
 - Implement some special bit patterns into DSCF to speed up the decoding.

Conclusion

- First steps towards a practical implementation for the Dynamic SCF algorithm.
- We showed how to:
 - Replace transcendental computations with a simple threshold
 - Implement some special bit patterns into DSCF to speed up the decoding.
- When all simplifications are applied:
 - The FER is equivalent to the original DSCF algorithm,
 - Expensive operations (log, exp, ×) are eliminated,
 - Average number of decoding steps is reduced by up to 6.4×.

Thank you for your attention!