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Motivation

I Polar Codes provably achieve channel capacity

I Adopted in 5G eMBB control channel

I Being considered for 5G URLLC & mMTC channels

I 5G standardization targets

I Improved error-correction performance, T/P

I Low power/energy consumption

[1] E. Arıkan. ”Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 30513073, July
2009.
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Motivation

I Successive Cancellation (SC) decoding

- Mediocre error-correction performance

I Successive Cancellation List (SC-List) decoding

3 Improved error-correction performance

7 Increased latency, area, power consumption

I Successive Cancellation Flip (SC-Flip) decoding

3 Error-correction performance comparable to SC-List

3 Implementation complexity close to that of SC

3 Average latency converges to that of SC
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SC-Flip Decoding: Idea
I Classifying erroneous decisions into:

I Channel-induced errors

I Propagated errors due to a previous error

I First error (E1) is always due to channel

I Improved error-correction if first error is avoided!

I Goal: Locate and correct the first erroneous decision

I SC decoding is supported by a CRC

I Multiple SC iterations are necessary

[2] O. Afisiadis, A. Balatsoukas-Stimming and A. Burg, ”A low-complexity improved successive cancellation
decoder for polar codes,” 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
2014, pp. 2116-2120.
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Example: N = 16, K + C = 12, Tmax = 4
I First iteration: pass/fail?

T = 1: titer =
16
16

SC + CRC
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Example: N = 16, K + C = 12, Tmax = 4
I Fail: Flip Tmax − 1 least reliable indices, one at a time

T = 1: titer =
16
16

SC + CRC

α : 0.5 0.8 0.6
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Example: N = 16, K + C = 12, Tmax = 4
I T = 2: Flip least reliable index

T = 1: titer =
16
16

SC + CRC

α : 0.5 0.8 0.6

T = 2: titer =
16+13

16
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Example: N = 16, K + C = 12, Tmax = 4
I T = 3: Flip second least reliable index

T = 1: titer =
16
16

SC + CRC

α : 0.5 0.8 0.6

T = 2: titer =
16+13

16

T = 3: titer =
29+7

16
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Example: N = 16, K + C = 12, Tmax = 4
I T = 4: Flip third least reliable index

T = 1: titer =
16
16

SC + CRC

α : 0.5 0.8 0.6

T = 2: titer =
16+13

16

T = 3: titer =
29+7

16

T = 4: titer =
36+11

16
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SC-Flip Decoding: Insights

I PC(1024,512)
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Partitioned SC-Flip Decoding Algorithm (PSCF)
Observations:

7 SC-Flip does not achieve SC-Oracle performance within a
practical Tmax

7 The search space for the flipping index is too large

Idea:

I Divide the codeword into a number of partitions

I Each partition is protected by its own CRC

3 The search space for the flipping index is narrowed

3 Reduced iterations, enables early termination

3 Possibility of correcting multiple channel-induced errors

! ...if each error resides in a different partition
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PSCF Decoding Algorithm
I Codeword is divided into sub-blocks

T = 1: titer =
8

16

SC + CRC
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PSCF Decoding Algorithm
I SC-Flip is applied to each sub-block independently

T = 1: titer =
8

16

SC + CRC

α : 0.5 0.8
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PSCF Decoding Algorithm
I SC-Flip is applied to each sub-block independently

T = 1: titer =
8

16

SC + CRC

α : 0.5 0.8

T = 2: titer =
8+5
16
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PSCF Decoding Algorithm
I SC-Flip is applied to each sub-block independently

T = 1: titer =
8

16

SC + CRC

α : 0.5 0.8

T = 2: titer =
8+5
16

T = 3: titer =
13+3

16
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PSCF Decoding Algorithm
I Shorter iterations result reduced Tavg

T = 1: titer =
8

16

SC + CRC

α : 0.5 0.8

T = 2: titer =
8+5
16

T = 3: titer =
13+3

16

T = 4: titer =
16+8

16
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How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+
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Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



How to Partition The Codeword

I Objective: to cover
equal amount of
error probability in
each partition

E1 E2 E3+

0

0.2

0.4

0.6

0.8

1

Error Order (Ei )
R

el
at

iv
e

fre
qu

en
cy

of
oc

cu
rr

en
ce

Eb/N0 = 1.0 dB
Eb/N0 = 1.5 dB
Eb/N0 = 2.0 dB
Eb/N0 = 2.5 dB
Eb/N0 = 3.0 dB

I Each partition should cover an equal probability of error
occurrence

I E1 dominates the error occurrence at medium/high SNR→
can be used to approximate partitioning

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 8/14



Codeword Partitioning

I Figure: CDF based on
E1 (Eb/N0 = 2.5 dB)

I Objective: To find
partitioning indices ρ
such that 0 < ρ < N

I Example: P = 2

I ρ(1024,256) = 425

I ρ(1024,512) = 512

I ρ(1024,768) = 204
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Simulation Results - Performance

I PC(1024,512), C = 32, Tmax = 10, P = 2
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Simulation Results - Performance (cont’d)

I PC(1024,512), C = 32, Tmax = 10, P = 4
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Simulation Results - Average Iterations

I PC(1024,512), C = 32

I At matching FER with SC-Flip (Tmax = 10)

1 1.5 2 2.5 3 3.5

1

2

3

4

Eb/N0 [dB]

T a
vg

SC-Flip
PSCF(P = 2)
PSCF(P = 4)

Furkan Ercan (McGill University) — Partitioned Successive-Cancellation Flip Decoding of Polar Codes — ICC‘2018 12/14



Conclusion

We have presented Partitioned SC-Flip decoding algorithm for
polar codes

I Correcting more than a single error is possible via
partitioning

3 Improved error-correction performance by up to 0.26 dB
with P = 2 compared to SC-Flip

I Significantly reduced Tave compared to baseline SC-Flip

3 Reduction by up to 3.2× with P = 2 and 4.1× with P = 4

3 Leads to increased average throughput and reduced
energy consumption

I Cummulative error distribution schemes help decide better
partitioning
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Thank you!
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