Comparative Power-Delay Performance Analysis of Threshold Logic Technologies

Furkan Ercan^{*}, Ali Muhtaroglu[†] ^{*}Sustainable Environment and Energy Systems [†]Electrical and Electronics Engineering Middle East Technical University Northern Cyprus Campus March 25th, 2014

METU

ICEAC 2015 - 5th International Conference on Energy Aware Computing & Applications

Outline

- Introduction
- History
- Areas of Use
- Motivation
- Threshold Logic (TL) Technologies
- Evaluation (Testing) Methods
- Simulation Results
- Summary

Introduction

• Threshold Logic (TL) detects if number of inputs exceed a pre-defined threshold number

$$m(\Theta) = 1 \text{ if } \sum_{i=0}^{n} x_i \ge \Theta$$

- O: Threshold number
- n: Number of inputs
- m: threshold function
- x_i: input
- Although they were first introduced in 1960s, gained popularity in 2000s
- Considered to be an alternative to Boolean Logic (BL)
 - e.g. possesses 'greater logic power' *1

History of TL

- TL technologies didn't gain popularity until 2000s
 - Hampel asked 'why not use TL instead of BL?'
- Beiu et al.*² answered Hampel's question (2003) in their survey
 - Lack of TL synthesis tools
 - Less robust for manufacturing, more customization (i.e. time)
- (2004) Design automation tools *³
- (2007) Synthesis & verification tools *4
- (2008) Test pattern generation algorithms *⁵

Developments for TL upon Beiu's survey

^{*1} V. Beiu, J. Quintana and M. Avedillo, "VLSI implementations of threshold logic-a comprehensive survey," Neural Networks, IEEE Transactions on, vol. 14, no. 5, pp. 1217-1243, 2003.

^{*2} R. Zhang, P. Gupta, L. Zhong and N. Jha, "Synthesis and optimization of threshold logic networks with application to nanotechnologies," Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 2, pp. 904-909, 2004. 4/21

^{*3} T. Gowda, S. Vrudhula and G. Konjevod, "Combinational equivalence checking for threshold logic circuits," Proceedings of the 17th ACM Great Lakes symposium on VLSI, pp. 102-107, 2007.

^{*&}lt;sup>4</sup> P. Gupta, R. Zhang and N. Jha, "Automatic Test Generation for Combinational Threshold Logic Networks," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 8, pp. 1035-1045, 2008.

Areas of Use

- Artificial Neural Networks (ANN)
 - Use of software/FPGA are not energy efficient
- Arithmetic Applications
 - i.e. addition, multiplication, threshold
- Binarization
 - Evaluation of pixels (or matrices) with pass/fail threshold
- Use of TL is still rare
- BL/software is preferred

Threshold Logic in Literature

- Implementation with complementary pass transistors *6
 - Quintana et al.: Advantageous on low power
- TLs based on capacitive networks *7-9
 - Leblebici et al.: Advantageous on delay/area over Boolean Logic
- Differential/Mirror based TL implementations *10-11
 - Avedillo et al.: Trade-offs over delay, area, power
- Other technologies:
 - Single-electron technology (SET)
 - Resonant-tunneling diode (RTD)
 - Memristor-based implementations

^{*6} J. M. Quintana, M. J. Avedillo, R. Jimenez and E. Rodrigues-Villegas, "Practical low cost implementations of threshold logic functions," GLSVLSI, ACM, 2001.

^{*7} H. Ozdemir, A. Kepkep, B. Pamir, Y. Leblebici and U. Cilingiroglu, "A capacitive threshold-logic gate," IEEE Journal of Solid-State Circuits, vol. 31, no. 8, pp. 1141-1150, 1996.

^{*8} A. Schmid and Y. Leblebici, "Realisation of multiple-valued functions using the capacitive threshold logic gate,," Computers and Digital Techniques, IEE Proceedings, vol. 151, no. 6, pp. 435-447, 2004.

^{*9} J. López-García, J. Fernández-Ramos and A. Gago-Bohórquez, "A balanced capacitive threshold-logic gate," Analog Integrated Circuits and Signal Processing, vol. 40, no. 1, pp. 61-69, 2004.

^{*10} M. Padure, S. Cotofana, S. Vassiliadis, C. Dan and M. Bodea, "A low-power threshold logic family," in 9th International Conference on Electronics, Circuits and Systems., 2002.

^{*11} M. J. Avedillo, J. Quintana, A. Rueda and E. Jimenez, "Low-power CMOS threshold-logic gate," Electronics Letters, vol. 31, no. 25, pp. 2157-2159, 1995.

Motivation

- All TL technologies in literature emphasize criteria based on either
 - Numeric values
 - Comparative values w.r.t. similar implementations or Boolean Logic
- Little work on power/delay comparison of TLs from different circuit families
- A methodology for such comparison is missing
 - It is difficult to gather different technologies for comparison
 - Different technologies require various conditions
 - i.e. clock(s), analog/digital, custom source(s), number/type of outputs
- A fair comparison scenario of comparing various TLs provides valuable insight

Scope of This Study

- Capacitive Threshold Logic (CTL) comparison with CMOS-based TL was presented earlier in ICEAC '13 *12
- This work expands the earlier investigation further
- Seven TL technologies are compared on power/performance/area
 - Compound-CMOS (CMOSTL)
 - Boolean (NAND-based) (GTL)
 - Complementary Pass Transistor (CPLTL)

- Capacitive (CTL)
- Differential (DTL)
- Current-Comparator (ITL)
- Full Adder (FATL)

• A testing scenario is developed for TLs that have specific requirements

*12 F. Ercan and A. Muhtaroglu, "Energy-delay performance of capacitive threshold logic (CTL) circuits for threshold detection," in *Energy Aware Computing Systems and Applications (ICEAC), 4th Annual International Conference on,* 2013.

Computing & Applications

Analog-Based TL Technologies

Capacitive Threshold Logic (CTL)

Current-Based Threshold Logic (ITL) 10/21

Evaluation Methods & Requirements

- CTL & DTL require clock signals
 - Need refresh before each evaluation:

$$t_p = t_{p,rst} + t_{p,eval}$$

 $P_{tot,av} = V_{DD} I_{stat} + C_{dvn} V_{DD}^2 f$

- Average power dissipation is calculated for various frequencies
 - Extraction of static and dynamic power:
 - PDP = $P_{tot,av} \times t_p$
- DTL, CPLTL, FATL have multiple outputs
 - Worst-case output is taken into account
- UMC 180nm technology 2.5/1 Aspect Ratio Fan-in limit: 4
- Results are categorized w.r.t.:
 - Number of inputs
 - Threshold number

Results: with input number

- GTL has 29.2% lower delay than next best case (CPLTL)
- CMOSTL has 4.7% lower P_{av} than next best case (CPLTL)
- CPLTL has 13.6% lower PDP than next best case (GTL)
- DTL has the worst delay profile
- CTL has the worst power/PDP profile followed by FATL (2x)
- Values are arithmetic averages of varying number of inputs!
- 1/2, 2/4, 3/6, 4/8 (threshold/input) cases

Results: with threshold number

- GTL has 36.1% lower delay than next best case (CTL)
- CMOSTL has 3.8% lower P_{av} than next best case (DTL)
- CPLTL has 2.6% lower PDP than next best case (GTL)
- FATL has the worst delay profile
- CTL has the worst power/PDP profile followed by FATL (2x)
- Values are arithmetic averages of varying number of threshold!
- 2/8, 4/8, 6/8, 8/8 (threshold/input) cases

PDP w.r.t. input and threshold numbers

 Large variations (if any) w.r.t. input number / threshold should be taken into account

ICEAC 2015 - 5th International Conference on Energy Aware

Computing & Applications

*Practical variations on perturbed voltage of CTL yields uneven fluctuations in PDP

PDP w.r.t. input and threshold numbers

For CMOSTL and GTL:

 $#gates_{input} = comb(n, \Theta)$

Area, power, delay is the most when $\Theta = n/2$

Number of MOSFET devices					
	CMOSTL	GTL			
2/8	149	364			
4/8	638	1900			
6/8	314	1092			
8/8	58	46			

 Large variations (if any) w.r.t. input number / threshold should be taken into account

Summary Table - Quantitative

AVERAGE STATISTICS, CHARACTERISTICS, APPLICATIONS OF USE OF THRESHOLD LOGIC GATES								
		CMOSTL	GTL	CPLTL	FATL	DTL	CTL	
s	Delay (ns)	0.661	0.444	0.627	0.710	LOGIC GATES L DTL CTL .0 0.974 0.864 59 88.38 251.19 .6 86.77 216.69 .2 21 50 .9 1.117 0.872		
Average Valı w.r.t # of input	Ρ(μW)	84.03	109.53	88.20	121.59	88.38	251.19	
	PDP (fJ)	95.02	69.37	59.89	98.66	86.77	216.69	
	# of devices	216	582	124	192	21	50	
tt les	Delay (ns)	0.887	0.557	0.944	1.139	1.117	0.872	
Average Valu w.r.t threshold #	Ρ(μW)	92.57	155.98	109.89	159.17	96.29	338.58	
	PDP (fJ)	112.71	106.46	103.74	181.30	107.55	295.57	
	# of devices	290	850	234	384	27	77	

ICEAC 2015 - 5th International Conference on Energy Aware

Computing & Applications

Summary Table - Qualitative

AVERAGE STATISTICS, CHARACTERISTICS, APPLICATIONS OF USE OF THRESHOLD LOGIC GATES							
		CMOSTL	GTL	CPLTL	FATL	DTL	CTL
Analog	g/Digital	Digital	Digital	Digital	Digital	Analog	Analog
Need of Refe	erence Voltage	No	No	No	No	No	Yes
Sym	metry	N/A	N/A	N/A	N/A	Yes	Yes
Number of	Clock Signals	-	-	-	-	1	2
Number	of Outputs	1	1	N	log ₂ (N)+1	2	1
Fa	n-in	small	small	large	large	large	inter
of TLG use High Poince Swa	Low power	х	х	\checkmark	х	\checkmark	х
	High performance	Х	\checkmark	\checkmark	х	х	x
	Low PDP	Х	x	\checkmark	х	\checkmark	x
	Smaller area	Х	x	x	x	\checkmark	\checkmark
ns re(Combinational	\checkmark	\checkmark	\checkmark	\checkmark	x	x
Applicatio that	Pipeline	Х	х	х	х	\checkmark	\checkmark
	Multi-threshold	Х	x	\checkmark	\checkmark	\checkmark	x
	Single-threshold	\checkmark	\checkmark	Х	Х	\checkmark	x
	Low standby power	\checkmark	\checkmark	\checkmark	\checkmark	x	x

Conclusion

- A comparison scenario is developed to compare TLs from different technologies
- Seven TL technologies are compared against each other on power and performance
- Compared to their next best case;
 - GTL holds 29.2% better delay
 - CMOSTL proves 3.8% lower average power consumption
 - CPLTL provides 2.6% lower PDP

Summary

- GTL is preferable for performance oriented platforms (i.e. servers)
- DTL/CMOSTL are better fit for power oriented platforms (i.e. mobile)
- FATL/CPLTL provides lower power consumption for apps that require multiple threshold outputs
- CPLTL/DTL are more preferable for PDP-oriented platforms (i.e. desktop/notebook)
- This work can be extended to cover more TL implementations from TL technologies
- A more sophisticated testing requirement may be necessary for other TL technologies
- Despite the TL reviews/implementations in literature, without such a crosscomparison scenario that looks into all relevant metrics may be misleading

Thank you