

Energy-Efficient Polar Decoders for 5G and Beyond

FURKAN ERCAN*, THIBAUD TONNELLIER, WARREN J. GROSS

THE THREE MAIN 5G USE CASES

Enhanced Mobile Broadband (**eMBB**)

High Throughput

Low Latency

High Reliability

Massive Machine-Type Communications (**mMTC**)

Massive Connectivity Energy Efficiency

CHANNEL CAPACITY

Claude E. Shannon

Known as the father of the information age

"There exists a maximum rate of information that can be transmitted reliably over a channel"

WHAT WE OBSERVED

- Fast polar decoder architectures are more energy-efficient
- SCF decoding uses far less resources than SCL
- SCF has redundant operations/memories

WHAT WE DID

- An architecture that uses fast decoding for SCF (Fast-SCF)
- Eliminated the redundant operations and resources
- Reported architecture is the first for Fast-SCF algorithm

ALGORITHMIC IMPROVEMENTS

Idea: Involve only the minimum value instead of many values in the sorting process

DECODING PERFORMANCE

[†] P. Giard and A. Burg, "Fast-SSC-flip decoding of polar codes," 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, 2018, pp. 73-77.

FAST-SCF ARCHITECTURE

Sorter Architecture

- Main beneficiary of the algorithmic improvements
- Then: 982 sorter elements in 28 stages
- Now: 228 sorter elements in 18 stages

Beta Memory

• Condensed utilization allows for 50% reduction at zero cost

Processor

• Increased resource sharing

RESULTS

- \rightarrow TSMC 65nm CMOS technology
- \rightarrow Post-synthesis simulations
- \rightarrow Real activity for accurate power

Using PC(1024, 512)

	Fast-SCF	SCF*
Power (mW)	83.44	51.30
Area (mm ²)	0.56	N/A
Latency (μ s)	14.2	266.2
Throughput (Mbps)	1511	81
Energy (pJ/bit)	110.4	1270

*Giard et al. "PolarBear: A 28-nm FD-SOI ASIC for Decoding of Polar Codes," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4, pp. 616-629, Dec. 2017.

Using PC(512, 256)

	Fast-SCF	Fast-SSCL**
Power (mW)	57.42	119.68
Area (mm 2)	0.36	0.42
Latency (μ s)	6.93	0.43
Throughput (Mbps)	1552	1201
Energy (pJ/bit)	74.0	199.3

**Hashemi et al. "Fast and Flexible Successive-Cancellation List Decoders for Polar Codes," in IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 5756-5769, 1 Nov.1, 2017.