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Introduction

• CPU and memory currently have separate policies to control their DVFS

• Existing policies are based on local information and control; what is 
missing is the interactions between resources

• Our aim is to find an effective way to manage DVFS for both given a 
performance loss tolerance

• The contribution of this work is to manage CPU and memory more 
efficiently through an integrated policy
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Integrated vs. Independent Policy

4

• Independent Policies (State-of-the-art): Considers their respective resources only (CPU or 
memory), one policy per resource.

• Integrated Policy (proposal): Considers both resources at the same time, a better 
perspective of workload’s resource allocation.
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Background: Current DVFS Policies

Core DVFS (Linux)

• ondemand: based on system load (mostly used)
▪ Does not have a tolerance, will run at max frequency for the 

workloads as spec web.

• conservative: based on system load with gradually 
switching among P-states.

5

Memory DVFS 

• H-state Policy : Memory utilization

• Smooth transition between H-states
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Integrated Policy

6

• Given the tolerance that an application can 

tolerate

• The policy monitors and control CPU, uncore and 

memory frequency at the 

same time.

• Dynamically allocate slack based on application’s 

usage of each resource

• i.e. cache hierarchy hit rates & memory BW

• Tolerance is controlled by adjusting latency of 

accessing to the memory hierarchy (L1, L2, LLC & 

memory) using ‘Effective Memory Latency’ 

equation
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Effective Memory Latency

• Workload characteristics are basically considered as CPU 
intensive and memory intensive (or both) depending on how 
utilized they use the CPU and memory.

• We define Effective Memory Latency (EML) as: (unit in ns):
• EML = L1D Read Hit Rate x L1D Access Time +

• L2 Read Hit Rate x L2 Access Time +

• LLC Read Hit Rate x LLC Access Time +

• Memory Read Hit Rate x Memory Access Time

• Memory access time depends on the memory traffic (BW) and 
the current H-state.

• We rely on ‘read’ hit rates since writes have a separate buffer 
that does not cause as much stall as reads.

7

Depends on core freq

Depends on uncore freq*

Depends on mem freq**
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Average Hit Rates of spec CPU 2006 workloads
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Integrated Policy: Dynamic
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CPU versus Memory Efficiency: libquantum
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Experimental Setup
– NHM Greencity Server System
– Two C0 stepping NHM packages
– 2 DIMMs per channel, 48 GB (DDR3-1333 dual rank by 

8)
– Red Hat ™ Enterprise Linux OS 6.0
– Extended H-state Tool

• H-state Tool developed by Intel Labs controls H-states w.r.t BW
• Developed over original H-state Tool to monitor and control 

CPU and memory with an acceptable performance loss.

– SPEC CPU 2006 workloads
– P-state range : 1.6 GHz to 2.93 GHz with 0.267 GHz 

stepping
– H-state range: 0.8 GHz to 1.33 GHz with 0.267 GHz 

stepping

11
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Policies to be Compared &
Latency Constraint Allocation

12

Explanation Latency Constraint (S)

Integrated Policy Single mechanism that 
controls both P & H states 
subject to a performance 
loss tolerance S.

Dynamically allocated to 
core and memory

Independent Policy Two separate policies for P 
& H states subject to 
tolerance S1 and S2.

S1=2/3 S to Core

S2=1/3 S to Memory

Semi-Independent Policy Similar to Integrated 
without accounting for 
interactions. Assuming 
other subsystem running at 
max freq. Subject to S1 and 
S2.

S1=2/3 S to Core

S2=1/3 S to Memory
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Total Energy Efficiency % Comparison 
(Higher is Better)
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Total Performance Loss % Comparison 
(Lower is Better)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

P
e

rf
o

rm
an

ce
 L

o
ss

 %

Total Performance Loss %

Integrated Independent Semi-Independent

14

December 4, 2012



INTEL CONFIDENTIAL

Summary

– An Integrated Policy with a defined performance 
loss tolerance has a better profile in terms of 
energy efficiency over an Independent Policy.

– Semi-Independent Policy profile is closer to 
Integrated Policy, yet it is limited with pre-
distribution of the tolerance to the resources, thus 
achieves lower energy efficiency.

– Integrated Policy saves energy mostly from 
memory-intensive workloads which does not 
utilize the CPU as much as a regular (or CPU 
intensive) workload.
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Thank You
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