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Introduction

CPU and memory currently have separate policies to control their DVFS

Existing policies are based on local information and control; what is
missing is the interactions between resources

Our aim is to find an effective way to manage DVFS for both given a
performance loss tolerance

The contribution of this work is to manage CPU and memory more
efficiently through an integrated policy
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Integrated vs. Independent Policy

Independent Policies (State-of-the-art): Considers their respective resources only (CPU or

memory), one policy per resource.
Integrated Policy (proposal): Considers both resources at the same time, a better

perspective of workload’s resource allocation.

“Independent Policies” _— —
-/d--"--f "-\-\._H.H‘
r ™
Integrated Policy
Care Palicy Memary Policy

[
s i P
A = =
d 5 3 g
3 T c
=

Caores fMemory Subsystern Cores P ——

December 4, 2012



Background: Current DVFS Policies

Core DVFS (Linux)
ondemand: based on system load (mostly used)

= Does not have a tolerance, will run at max frequency for the
workloads as spec web.

conservative: based on system load with gradually
switching among P-states.

Memory DVFS

H-state Policy : Memory utilization
Smooth transition between H-states
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Integrated Policy

Given the tolerance that an application can
tolerate

The policy monitors and control CPU, uncore and
memory frequency at the

same time.

Dynamically allocate slack based on application’s

usage of each resource

* i.e.cache hierarchy hit rates & memory BW

Tolerance is controlled by adjusting latency of
accessing to the memory hierarchy (L1, L2, LLC &
memory) using ‘Effective Memory Latency’
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Effective Memory Latency

Workload characteristics are basically considered as CPU
intensive and memory intensive (or both) depending on how
utilized they use the CPU and memory.

We define Effective Memory Latency (EML) as: (unit in ns):

EML = [LlD Read Hit Rate x L1D Access Time +] . - -
J epenas on core treq

L2 Read Hit Rate x L2 Access Time +

[LLC Read Hit Rate x LLC Access Time + ]é Depends on uncore freq*

{Wemory Read Hit Rate x Memory Access Time ]9 Depends on mem freq**
Memory access time depends on the memory traffic (BW) and
the current H-state.

We rely on ‘read’ hit rates since writes have a separate buffer
that does not cause as much stall as reads.
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Average Hit Rates of spec CPU 2006 workloads

W[L1HR ®WL2HR ®WLLCHR ®mMEMHR

Memory intensive workloads

Average Effective Memory Latency
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Integrated Policy: Dynamic

e [Mlemory Freq == Core Freq

astar P & H State Transitions Over Runtime
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libquantum

CPU versus Memory Efficiency

Core Power vs. Time

= Baseline CPU

= |ntegrated CPU
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Memory Power vs. Time
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Experimental Setup

— NHM Greencity Server System

— Two CO stepping NHM packages

— 2 DIMMs per channel, 48 GB (DDR3-1333 dual rank by
8)

— Red Hat ™ Enterprise Linux 0S 6.0

— Extended H-state Tool

* H-state Tool developed by Intel Labs controls H-states w.r.t BW

* Developed over original H-state Tool to monitor and control
CPU and memory with an acceptable performance loss.

— SPEC CPU 2006 workloads

— P-state range : 1.6 GHz to 2.93 GHz with 0.267 GHz
stepping

— H-state range: 0.8 GHz to 1.33 GHz with 0.267 GHz
stepping
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Policies to be Compared &
Latency Constraint Allocation

_ Explanation Latency Constraint (S)

Integrated Policy Single mechanism that Dynamically allocated to
controls both P & H states  core and memory
subject to a performance
loss tolerance S.

Independent Policy Two separate policies for P S1=2/3 S to Core
& H states subject to
tolerance S1 and S2. S$2=1/3 S to Memory
Semi-Independent Policy Similar to Integrated S1=2/3 S to Core
without accounting for
interactions. Assuming S$2=1/3 S to Memory

other subsystem running at
max freq. Subject to S1 and
S2.
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Total Energy Efficiency % Comparison

(Higher is Better)

Total Efficiency %

Energy Efficiency % Comparison (Weighted Average)
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Total Performance Loss % Comparison
(Lower is Better)

Total Performance Loss %
14.00%

M Integrated M Independent = Semi-Independent

12.00%

10.00%

8.00%

6.00%

Performance Loss %

4.00%

2.00% -

0.00%

14
December 4, 2012



Summary

— An Integrated Policy with a defined performance
loss tolerance has a better profile in terms of
energy efficiency over an Independent Policy.

— Semi-Independent Policy profile is closer to
Integrated Policy, yet it is limited with pre-
distribution of the tolerance to the resources, thus
achieves lower energy efficiency.

— Integrated Policy saves energy mostly from
memory-intensive workloads which does not
utilize the CPU as much as a regular (or CPU
intensive) workload.

December 4, 2012



Thank You
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