
INTEL CONFIDENTIAL

An Integrated DVFS Policy
Approach for CPU & Memory

1. METU NCC, Sustainable Environment and Energy Systems

2. Intel Labs, Intel Corporation

ICEAC 2012

December 4, 2012

Furkan Ercan1, Neven Abou Gazala2, Howard David2

INTEL CONFIDENTIAL

Overview

2

• Introduction

• Core & Memory Power Model

• Integrated Policy

• Experimental Setup

• Results

• Summary

INTEL CONFIDENTIAL

Introduction

• CPU and memory currently have separate policies to control their DVFS

• Existing policies are based on local information and control; what is
missing is the interactions between resources

• Our aim is to find an effective way to manage DVFS for both given a
performance loss tolerance

• The contribution of this work is to manage CPU and memory more
efficiently through an integrated policy

3

December 4, 2012

INTEL CONFIDENTIAL

Integrated vs. Independent Policy

4

• Independent Policies (State-of-the-art): Considers their respective resources only (CPU or
memory), one policy per resource.

• Integrated Policy (proposal): Considers both resources at the same time, a better
perspective of workload’s resource allocation.

December 4, 2012

INTEL CONFIDENTIAL

Background: Current DVFS Policies

Core DVFS (Linux)

• ondemand: based on system load (mostly used)
▪ Does not have a tolerance, will run at max frequency for the

workloads as spec web.

• conservative: based on system load with gradually
switching among P-states.

5

Memory DVFS

• H-state Policy : Memory utilization

• Smooth transition between H-states

December 4, 2012

INTEL CONFIDENTIAL

Integrated Policy

6

• Given the tolerance that an application can

tolerate

• The policy monitors and control CPU, uncore and

memory frequency at the

same time.

• Dynamically allocate slack based on application’s

usage of each resource

• i.e. cache hierarchy hit rates & memory BW

• Tolerance is controlled by adjusting latency of

accessing to the memory hierarchy (L1, L2, LLC &

memory) using ‘Effective Memory Latency’

equation

December 4, 2012

INTEL CONFIDENTIAL

Effective Memory Latency

• Workload characteristics are basically considered as CPU
intensive and memory intensive (or both) depending on how
utilized they use the CPU and memory.

• We define Effective Memory Latency (EML) as: (unit in ns):
• EML = L1D Read Hit Rate x L1D Access Time +

• L2 Read Hit Rate x L2 Access Time +

• LLC Read Hit Rate x LLC Access Time +

• Memory Read Hit Rate x Memory Access Time

• Memory access time depends on the memory traffic (BW) and
the current H-state.

• We rely on ‘read’ hit rates since writes have a separate buffer
that does not cause as much stall as reads.

7

Depends on core freq

Depends on uncore freq*

Depends on mem freq**

December 4, 2012

INTEL CONFIDENTIAL

Average Hit Rates of spec CPU 2006 workloads

8

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

H
it

 R
at

e
s

%

L1 HR L2 HR LLC HR MEM HR

La
te

n
cy

Average Effective Memory Latency
Memory intensive workloads

December 4, 2012

INTEL CONFIDENTIAL

Integrated Policy: Dynamic

0

0.5

1

1.5

2

2.5

3

3.5

1
1

2
0

2
3

9
3

5
8

4
7

7
5

9
6

7
1

5
8

3
4

9
5

3
1

0
7

2
1

1
9

1
1

3
1

0
1

4
2

9
1

5
4

8
1

6
6

7
1

7
8

6
1

9
0

5
2

0
2

4
2

1
4

3
2

2
6

2
2

3
8

1
2

5
0

0
2

6
1

9
2

7
3

8
2

8
5

7
2

9
7

6
3

0
9

5
3

2
1

4
3

3
3

3
3

4
5

2
3

5
7

1
3

6
9

0
3

8
0

9
3

9
2

8
4

0
4

7
4

1
6

6
4

2
8

5
4

4
0

4
4

5
2

3
4

6
4

2
4

7
6

1
4

8
8

0
4

9
9

9
5

1
1

8
5

2
3

7
5

3
5

6
5

4
7

5
5

5
9

4

Fr
e

q
u

e
n

cy
 (

G
H

z)

Runtime Iterations

astar P & H State Transitions Over Runtime
 Memory Freq Core Freq

CPU activity high
Memory activity low
High Core Frequency

Low Memory Frequency

CPU activity low,
Memory activity high
Low Core Frequency,

High Memory Frequency

9

December 4, 2012

INTEL CONFIDENTIAL

CPU versus Memory Efficiency: libquantum

10

1
2

7
8

5
5

5

8
3

2
1

1
0

9
1

3
8

6

1
6

6
3

1
9

4
0

2
2

1
7

2
4

9
4

2
7

7
1

3
0

4
8

3
3

2
5

3
6

0
2

3
8

7
9

4
1

5
6

4
4

3
3

4
7

1
0

4
9

8
7

5
2

6
4

5
5

4
1

5
8

1
8

6
0

9
5

6
3

7
2

6
6

4
9

6
9

2
6

7
2

0
3

7
4

8
0

7
7

5
7

8
0

3
4

8
3

1
1

8
5

8
8

8
8

6
5

9
1

4
2

9
4

1
9

9
6

9
6

9
9

7
3

1
0

2
5

0
1

0
5

2
7

1
0

8
0

4
1

1
0

8
1

1
1

3
5

8

1
1

6
3

5
1

1
9

1
2

1
2

1
8

9

1
2

4
6

6
1

2
7

4
3

1
3

0
2

0

1
3

2
9

7
1

3
5

7
4

1
3

8
5

1

1
4

1
2

8
1

4
4

0
5

1
4

6
8

2

1
4

9
5

9

C
o

re
 P

o
w

e
r

(W
)

Runtime Iterations

Core Power vs. TimeIntegrated CPU Baseline CPU

(1)

1
2

7
8

5
5

5

8
3

2
1

1
0

9
1

3
8

6

1
6

6
3

1
9

4
0

2
2

1
7

2
4

9
4

2
7

7
1

3
0

4
8

3
3

2
5

3
6

0
2

3
8

7
9

4
1

5
6

4
4

3
3

4
7

1
0

4
9

8
7

5
2

6
4

5
5

4
1

5
8

1
8

6
0

9
5

6
3

7
2

6
6

4
9

6
9

2
6

7
2

0
3

7
4

8
0

7
7

5
7

8
0

3
4

8
3

1
1

8
5

8
8

8
8

6
5

9
1

4
2

9
4

1
9

9
6

9
6

9
9

7
3

1
0

2
5

0
1

0
5

2
7

1
0

8
0

4
1

1
0

8
1

1
1

3
5

8

1
1

6
3

5
1

1
9

1
2

1
2

1
8

9

1
2

4
6

6
1

2
7

4
3

1
3

0
2

0

1
3

2
9

7
1

3
5

7
4

1
3

8
5

1

1
4

1
2

8
1

4
4

0
5

1
4

6
8

2

1
4

9
5

9

M
e

m
o

ry
 P

o
w

e
r

(W
)

Runtime Iterations

Memory Power vs. TimeIntegrated Mem Baseline Mem

(3)

(4)

(2)

December 4, 2012

INTEL CONFIDENTIAL

Experimental Setup
– NHM Greencity Server System
– Two C0 stepping NHM packages
– 2 DIMMs per channel, 48 GB (DDR3-1333 dual rank by

8)
– Red Hat ™ Enterprise Linux OS 6.0
– Extended H-state Tool

• H-state Tool developed by Intel Labs controls H-states w.r.t BW
• Developed over original H-state Tool to monitor and control

CPU and memory with an acceptable performance loss.

– SPEC CPU 2006 workloads
– P-state range : 1.6 GHz to 2.93 GHz with 0.267 GHz

stepping
– H-state range: 0.8 GHz to 1.33 GHz with 0.267 GHz

stepping

11

December 4, 2012

INTEL CONFIDENTIAL

Policies to be Compared &
Latency Constraint Allocation

12

Explanation Latency Constraint (S)

Integrated Policy Single mechanism that
controls both P & H states
subject to a performance
loss tolerance S.

Dynamically allocated to
core and memory

Independent Policy Two separate policies for P
& H states subject to
tolerance S1 and S2.

S1=2/3 S to Core

S2=1/3 S to Memory

Semi-Independent Policy Similar to Integrated
without accounting for
interactions. Assuming
other subsystem running at
max freq. Subject to S1 and
S2.

S1=2/3 S to Core

S2=1/3 S to Memory

December 4, 2012

INTEL CONFIDENTIAL

Total Energy Efficiency % Comparison
(Higher is Better)

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

To
ta

l E
ff

ic
ie

n
cy

 %

Energy Efficiency % Comparison (Weighted Average)

Integrated Independent Semi-Independent

CPU Intensive

13

December 4, 2012

INTEL CONFIDENTIAL

Total Performance Loss % Comparison
(Lower is Better)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

P
e

rf
o

rm
an

ce
 L

o
ss

 %

Total Performance Loss %

Integrated Independent Semi-Independent

14

December 4, 2012

INTEL CONFIDENTIAL

Summary

– An Integrated Policy with a defined performance
loss tolerance has a better profile in terms of
energy efficiency over an Independent Policy.

– Semi-Independent Policy profile is closer to
Integrated Policy, yet it is limited with pre-
distribution of the tolerance to the resources, thus
achieves lower energy efficiency.

– Integrated Policy saves energy mostly from
memory-intensive workloads which does not
utilize the CPU as much as a regular (or CPU
intensive) workload.

15

December 4, 2012

INTEL CONFIDENTIAL

Thank You

16

December 4, 2012

